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Abstract

A classical problem of digital sequence design, first studied in the 1950s but still
not well understood, is to determine those binary sequences whose aperiodic autocor-
relations are collectively small according to some suitable measure. The merit factor
is an important such measure, and the problem of determining the best value of the
merit factor of long binary sequences has resisted decades of attack by mathemati-
cians and communications engineers. In equivalent guise, the determination of the
best asymptotic merit factor is an unsolved problem in complex analysis proposed by
Littlewood in the 1960s that until recently was studied along largely independent lines.
The same problem is also studied in theoretical physics and theoretical chemistry as
a notoriously difficult combinatorial optimisation problem.

The best known value for the asymptotic merit factor has remained unchanged
since 1988. However recent experimental and theoretical results strongly suggest a
possible improvement. This survey describes the development of our understanding
of the merit factor problem by bringing together results from several disciplines, and
places the recent results within their historical and scientific framework.

1 Introduction

A binary sequence A of length n is an n-tuple (a0, a1, . . . , an−1) where each ai takes the
value −1 or 1. The aperiodic autocorrelation of the binary sequence A at shift u is given
by

CA(u) :=

n−u−1
∑

i=0

aiai+u for u = 0, 1, . . . , n − 1. (1)

Since the 1950s, digital communications engineers have sought binary sequences whose
aperiodic autocorrelations are collectively small according to some suitable measure of
“goodness” (see Section 2.1). This survey deals with an important such measure, defined
by Golay [30] in 1972: the merit factor of a binary sequence A of length n is given by

F (A) :=
n2

2
∑n−1

u=1[CA(u)]2
, (2)
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and the best binary sequences are those with the largest merit factor.
Let An be the set of all binary sequences of length n. We define Fn to be the optimal

value of the merit factor for sequences of length n:

Fn := max
A∈An

F (A).

The principal problem in the study of the merit factor is to determine the asymptotic
behaviour of Fn:

The Merit Factor Problem. Determine the value of lim supn−→∞ Fn.

Golay’s publications reveal a fascination with the Merit Factor Problem spanning a period
of nearly twenty years [30], [31], [32], [33], [34], [35]; the closing words of [35], published
after Golay’s death, refer to the study of the merit factor as “. . . this challenging and
charming problem”.

Prior to Golay’s definition of merit factor in 1972, Littlewood [54] and other analysts
studied questions concerning the norms of polynomials with ±1 coefficients on the unit
circle of the complex plane. As we describe in Section 2.2, the Merit Factor Problem is
precisely equivalent to a natural such question involving the L4 norm. This survey traces
the historical development of the two (mostly independent) streams of investigation: the
merit factor of binary sequences, and the L4 norm of complex-valued polynomials with
±1 coefficients on the unit circle.

A benchmark result on the asymptotic behaviour of the merit factor was given by
Newman and Byrnes [62] in 1990:

Proposition 1.1. The mean value of 1/F , taken over all sequences of length n, is
n − 1

n
.

Proposition 1.1 shows that the asymptotic mean value of 1/F over all sequences of
length n is 1. We cannot follow [38] in concluding that the asymptotic mean value of F
itself over all sequences of length n is 1 [68], but we expect that “good” sequences will
have an asymptotic value of F greater than 1. Indeed, the best known asymptotic results
to date are given by explicitly constructed families of sequences whose merit factor tends
to 6 (see Theorems 4.1, 4.6 and 4.7). The current state of knowledge regarding the Merit
Factor Problem can therefore be summarised as:

6 ≤ lim sup
n−→∞

Fn ≤ ∞. (3)

Both of the extreme values in (3) have been conjectured to be the true value of the lim sup:

Conjecture 1.2 (Høholdt and Jensen, 1988 [39]). lim supn−→∞ Fn = 6.

Conjecture 1.3 (Littlewood, 1966 [53, §6]). lim supn−→∞ Fn = ∞.

Littlewood [53] also proposed stronger versions of Conjecture 1.3:

(i) limn−→∞Fn = ∞
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(ii) 1/Fn = O(1/
√

n) for infinitely many n

(iii) 1/Fn = O(1/
√

n) for all n.

My impression is that most researchers are reluctant to take seriously even the weakest
of Littlewood’s proposals, Conjecture 1.3, perhaps because the identity of their originator
does not seem to be widely known.

Considerable computational evidence has been amassed regarding the value of Fn for
specific values of n, in order to shed light on the Merit Factor Problem. Where compu-
tationally feasible, the actual value of Fn has been calculated; for larger values of n we
have lower bounds on Fn via the identification of good, though not necessarily optimal,
sequences (see Section 3). Indeed, Conjectures 1.2 and 1.3 are both based at least partially
on numerical data. Conjecture 1.2 was made in light of Theorem 4.1 and its proof in [39],
together with an examination of large values of F found in [4] for sequences of odd length
between 100 and 200. Conjecture 1.3 and the stronger versions (i), (ii) and (iii) listed
above were based primarily on calculation of Fn for 7 ≤ n ≤ 19; Littlewood [53] asserted
that “the evidence seems definitely in favour of [these conjectures]”, and reiterated in 1968
[54] that “the numerical evidence for [these conjectures] is very strong”. In terms of the
computational power readily available nowadays, the range of Littlewood’s calculations
from the 1960s appears woefully inadequate! By 1996 Mertens [58] had calculated the
value of Fn for n ≤ 48 and reached the “tentative conclusion” that limn−→∞Fn > 9. Cur-
rently the value of Fn has been calculated [59] for n ≤ 60, and large values of F are known
[45] for 61 ≤ n ≤ 271 (see Figure 1).

Some authors seem to have conjectured that lim supn−→∞ Fn is given by the largest
merit factor value known to be consistently achievable for long sequences at the time
of writing. For example, Newman and Byrnes [62] incorrectly conjectured in 1990 that
limn−→∞Fn = 5, “. . . based on extensive numerical evidence employing the Bose-Einstein
statistics methodology of statistical mechanics”. Likewise, as noted above, Høholdt and
Jensen [39] based Conjecture 1.2 in part on the best known merit factors reported in 1985 in
[4] for sequences of odd length between 100 and 200, which they described as “either strictly
smaller than or suspiciously close to 6”; however the current data underlying Figure 1
shows that the best merit factor is actually greater than 8 for all of these odd sequence
lengths. In contrast, Golay [33] proposed in 1982 that lim supn−→∞ Fn ≃ 12.32 (see
Section 4.7) and yet in 1983 wrote that [34] “. . . the eventuality must be considered that
no systematic synthesis will ever be found which will yield higher merit factors [than 6]”!

Recent work of Borwein, Choi and Jedwab [13] provides numerical evidence, from
sequences up to millions of elements in length, that lim supn−→∞ Fn > 6.34 (see Section 5).
This conclusion, which would increase the best known asymptotic merit factor for the first
time since 1988, is implied by Conjecture 5.3 on the behaviour of a specified infinite family
of sequences.

The remainder of this survey is organised as follows. Section 2 gives a detailed practi-
cal motivation for the Merit Factor Problem from digital sequence design, together with
a theoretical motivation from complex analysis. Section 3 describes various experimental
computational approaches that have been used to gather numerical data, including exhaus-
tive search and stochastic algorithms. Section 4 explains the main theoretical approaches
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that have been used to analyse the Merit Factor Problem. Section 5 outlines the method
and results of [13], which suggest a new lower bound for lim supn−→∞ Fn. Section 6 is a
selection of challenges for future study.

This survey is concerned only with binary sequences, although the definition of merit
factor has been extended to real-valued sequences (see for example [1]) as well as to binary
arrays of dimension larger than 1 (see for example [8]). I have found the earlier surveys of
Jensen and Høholdt [41] and Høholdt [38] to be helpful in preparing this paper, particularly
when writing Section 4.
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Figure 1: The optimal merit factor (for 2 ≤ n ≤ 60) and the best known merit factor (for
61 ≤ n ≤ 271) for binary sequences of length n.

2 Practical and Theoretical Motivation

This section shows how the Merit Factor Problem arises independently in digital sequence
design and complex analysis.

2.1 Digital Sequence Design

Since the 1950s, digital communications engineers have sought to identify those binary
sequences whose aperiodic autocorrelations are collectively as small as possible, for ap-
plication in synchronisation, pulse compression and especially radar [74]. This classical
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problem of digital sequence design remains largely unsolved. In 1953 Barker [2] proposed
that an ideal binary sequence of length n is one for which

C(u) = −1 or 0 for 0 < u < n,

but could find examples only for lengths n = 3, 7 and 11. Subsequent authors relaxed
Barker’s condition to:

|C(u)| = 1 or 0 for 0 < u < n, (4)

and binary sequences satisfying (4) became known as Barker sequences. By a parity
argument, no binary sequence can have a smaller value of |C(u)| than a Barker sequence
for any u. However the only non-trivial lengths for which Barker sequences are known to
exist are 2, 3, 4, 5, 7, 11 and 13, and it has long been conjectured that no other sequence
lengths n are possible:

Conjecture 2.1. There is no Barker sequence of length n > 13.

I do not know who first proposed Conjecture 2.1 but it is implied by Ryser’s Conjecture
[67] of 1963 on cyclic difference sets (see [48] for recent progress on this conjecture), and
Turyn [74] declared in 1968: “There is overwhelming evidence that there are no Barker
sequences [with n > 13]”. A weaker version of Conjecture 2.1, alluded to in [74], states
that there are only finitely many lengths n for which a Barker sequence of length n exists.
In order to continue the historical account we introduce some further definitions.

The periodic autocorrelation of a binary sequence A = (a0, a1, . . . , an−1) at shift u is
given by

RA(u) :=
n−1
∑

i=0

aia(i+u) mod n for u = 0, 1, . . . , n − 1, (5)

so that
RA(u) = CA(u) + CA(n − u) for 0 < u < n. (6)

A (v, k, λ) cyclic difference set is a k-element subset D of the cyclic group Zv for which
the multiset of differences {d1 − d2 : d1, d2 ∈ D, d1 6= d2} contains each non-zero element
of Zv exactly λ times (see [6] for background on difference sets, including generalisation
to non-cyclic groups). The following is well-known (see for example [3]):

Proposition 2.2. A (v, k, λ) cyclic difference set D is equivalent to a binary sequence A =
(a0, a1, . . . , av−1) having k elements −1 and constant periodic autocorrelation RA(u) =
v − 4(k − λ) for 0 < u < v, via the relationship

i ∈ D if and only if ai = −1, for 0 ≤ i < v.

Turyn and Storer [72] showed in 1961 that Conjecture 2.1 is true for odd n, and that if
a Barker sequence A of even length n > 2 exists then it satisfies RA(u) = 0 for 0 < u < n.
Therefore, by Proposition 2.2, if there is a Barker sequence of length v > 13 then there is a
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cyclic difference set in Zv satisfying v = 4(k − λ). Difference sets satisfying this condition
are known as Hadamard difference sets, and [73] must satisfy

(v, k, λ) = (4N2, 2N2 − N,N2 − N) for integer N. (7)

(See [20] for a survey of difference sets with parameters (7); note that the difference set
parameters (v, k, λ) given in (17) are unfortunately also called Hadamard.)

In his celebrated 1965 paper [73], Turyn showed that if there is a cyclic difference set
with parameters (7) in Z4N2 having N 6= 1, then N ≥ 55. The paper [73] established
the systematic use of algebraic number theory in the study of difference sets, which is
now a standard and much-used technique. (See [6] for an overview of this technique, and
some precursors to [73]; see [49] for dramatic improvements to the smallest open case
for a Barker sequence and for a cyclic difference set with parameters (7).) R. Turyn has
confirmed [personal communication, May 2003] that the chain of reasoning presented here,
beginning with the search for binary sequences with small aperiodic autocorrelations, was
the principal motivation behind [73]. I find it noteworthy that there has been a striking
expansion of knowledge regarding difference sets since the publication of [73] and yet we
still have not reached a comparably deep understanding of the original motivating problem.

Once it became apparent that the ideal behaviour given by a Barker sequence is unlikely
to be achieved beyond length 13, attention turned [69], [74] to two measures of how closely
the aperiodic autocorrelations of a binary sequence A of length n can collectively approach
the ideal behaviour. These two measures are:

n−1
∑

u=1

[CA(u)]2 (8)

and
M(A) := max

0<u<n
|CA(u)|. (9)

The first measure (8) is simply n2/(2F (A)), which was actually used by communications
engineers as a measure of the “goodness” of a binary sequence several years before Golay
[30] defined the merit factor in 1972 (see Section 3.2 for mention of Lunelli’s work [55] of
1965 in this context).

The second measure (9) has been less well studied. By analogy with Fn, define

Mn := min
A∈An

M(A)

to be the optimal value of M(A) for sequences of length n. By exhaustive search, Turyn
[74] showed that Mn ≤ 2 for n ≤ 21 in 1968 and Lindner [51] determined Mn for n ≤ 40 in
1975 using specialised hardware. In 1990 Cohen, Fox and Baden [18] found Mn for n ≤ 48
by fixing sequence elements one pair at a time, working from the endpoints towards the
centre and retaining only sequences with a prescribed maximum value of |C(u)|. Further
calculations along similar lines by Coxson, Hirschel and Cohen [19] in 2001 found Mn for
n ≤ 69. From [18] and [19] we have Mn ≤ 3 for all n ≤ 48 and Mn ≤ 4 for all n ≤ 69;
the value of Mn broadly increases with n, but not monotonically. In 1968 Moon and
Moser [61] used elementary counting arguments to establish an (apparently weak) upper
bound on Mn:
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Theorem 2.3. For any fixed ǫ > 0, Mn ≤ (2 + ǫ)(n log n)1/2.

I can see three possible explanations for the relative popularity of the measure (8) over
(9). The first is that we have a more developed theoretical framework for studying the
merit factor (see Section 4). The second is that the merit factor is a natural measure of
the energy efficiency of a binary sequence used for physical transmission of information
(see (13) and the comments following it). The third was offered by Turyn [74, p. 199] in
1968: “Intuitively one would expect [determination of lim supn−→∞ Fn] to be easier [than
determination of lim infn−→∞ Mn]”!

2.2 Complex Analysis

We now describe an equivalent formulation of the Merit Factor Problem from complex
analysis. Let PA(z) :=

∑n−1
i=0 aiz

i be the complex-valued polynomial whose coefficients
are the elements of the binary sequence A = (a0, a1, . . . , an−1) of length n. The L4 norm

of the polynomial PA(z) on the unit circle of the complex plane is defined to be

||PA(z)||4 :=

(
∫ 1

0
|PA(exp(2πθ

√
−1))|4dθ

)1/4

, (10)

and it is straightforward to show [53] that

||PA(z)||44 = n2 + 2

n−1
∑

u=1

[CA(u)]2. (11)

Therefore the merit factor of the sequence A is related to the L4 norm of the corresponding
polynomial of degree n − 1 by

||PA(z)||44 = n2

(

1 +
1

F (A)

)

, (12)

and a large merit factor corresponds to a small L4 norm. (See [17] for a survey of extremal
problems involving the L4 norm and other norms of complex-valued polynomials with ±1
coefficients.)

Statements such as Proposition 1.1 and Conjecture 1.3 were originally made in terms
of the L4 norm of ±1 polynomials, but have been expressed here in terms of the merit
factor using (12). (Results that are recast in terms of the merit factor in this way often
appear initially to be different from their original L4 formulation because complex analysis
usually considers polynomials of degree n, whereas (11) and (12) involve a polynomial of
degree n − 1.) However the results from the sequence design literature have not always
been known to the complex analysis community, and vice-versa. For example, Littlewood
[53] stated the correspondence (11) in 1966 without naming the aperiodic autocorrelation
coefficients, and highlighted the lengths n = 7, 11 and 13 as supporting binary sequences
satisfying (4) without mentioning Barker sequences (see Section 2.1). If Littlewood had
been aware of the nonexistence results for Barker sequences already found by Turyn and
Storer [72] in 1961 and by Turyn [73] in 1965, I do not believe he would have proposed
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Conjecture 1.3 in 1966 [53], repeated it in 1968 [54, Problem 19], and on both occasions
cited as strong evidence the calculated value of Fn for 7 ≤ n ≤ 19. Likewise, in 1988
Høholdt and Jensen [39] restated the correspondence (11) and explicitly linked the merit
factor of binary sequences to complex-valued polynomials with ±1 coefficients on the unit
circle (to my knowledge, for the first time). But they then declared: “Unfortunately, there
have been no results on [integrals of the type (10)], which can give new information on the
behavior of the merit factor”, whereas Littlewood [54] had given Theorem 4.2 in 1968.

Since
∫ 1
0 |PA(exp(2πθ

√
−1))|2dθ =

∑n−1
i=0 a2

i = n, we deduce from (2), (10) and (11)
that

∫ 1

0

{

∣

∣PA(exp(2πθ
√
−1))

∣

∣

2 − n
}2

dθ =
n2

F (A)
. (13)

The left-hand side of (13) measures, in terms of power, how much the amplitude spectrum
of the continuous-time signal corresponding to the sequence A deviates from its mean
value n [4]. Therefore a larger merit factor corresponds to a more uniform distribution of
the signal energy over the frequency range, which is of particular importance in spread-
spectrum radio communications.

We have seen in Proposition 2.2 that a cyclic difference set is equivalent to a binary
sequence A having constant periodic autocorrelation at all non-zero shifts. In terms of the
corresponding polynomial PA(z), it is equivalent to the value |PA(z)| being constant at all
complex nth roots of unity except 1.

Conjecture 1.3 is related to another old conjecture from complex analysis involving the
supremum norm of ±1 polynomials on the unit circle:

Conjecture 2.4 (Erdös, 1957 [24, Problem 22]). There exists a constant c > 0 such that,

for all n and for all binary sequences A = (a0, a1, . . . an−1) of length n,

sup
|z|=1

|PA(z)| ≥ (1 + c)
√

n

where PA(z) :=
∑n−1

i=0 aiz
i.

(Conjecture 2.4 was posed in [24] as a question as to whether a suitable c > 0 ex-
ists for complex-valued sequences satisfying |ai| = 1 for all i, and restated [25] in 1962
as a conjecture. Kahane [43] showed that the conjecture is false for complex-valued se-
quences, but the restriction of the question to binary sequences remains open.) Since
sup|z|=1 |PA(z)| ≥ ||PA(z)||4, we deduce from (12) that if Conjecture 1.3 is false then
Conjecture 2.4 is true.

Furthermore, by (2) and (4), a Barker sequence of even length n must have merit
factor n, so if Conjecture 1.3 is false then the weaker version of Conjecture 2.1 (that
there are only finitely many Barker sequences) is also true. So determining whether
lim supn−→∞ Fn is unbounded would be of great significance: if so then a 1966 conjecture
due to Littlewood is established; and if not then both a 1957 conjecture due to Erdös and
a forty-year-old conjecture on the finiteness of the number of Barker sequences are true!
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3 Computational Approaches

An experimental approach to mathematics has long provided “. . . a compelling way to
generate understanding and insight; to generate and confirm or confront conjectures; and
generally to make mathematics more tangible, lively and fun. . . ” [9]. The view of math-
ematics as an experimental science has become more prominent as computers of steadily
increasing power have become widely accessible to perform the role of “laboratory”. In
this spirit, considerable computational evidence has been collected regarding the value of
Fn for specific values of n, in order to better understand the Merit Factor Problem.

The value of Fn has been calculated for n ≤ 60 using exhaustive computation (see
Section 3.2). A lower bound on Fn has been found for 61 ≤ n ≤ 271 using stochastic search
algorithms to identify good, though not necessarily optimal, sequences (see Section 3.3).
The available evidence for n ≤ 271 is summarised in Figure 1. The two largest known
values of Fn are F13 ≃ 14.1 and F11 = 12.1, both of which arise from Barker sequences
(see Section 2.1); no other values of Fn ≥ 10 are known. The known lower bounds for
Fn suffer a reduction for values of n beyond about 200. However one would expect a
reduction of this sort owing to the increased computational burden for larger n and the
large number of local optima in the search landscape (see Section 3.3). Indeed, previous
versions of Figure 1, representing less extensive computational effort, have exhibited a
similar phenomenon but at smaller values of n.

3.1 Skew-Symmetric Sequences

A common strategy for extending the reach of merit factor computations (both exhaustive
and stochastic) is to impose restrictions on the structure of the sequence. The most popular
of these historically has been the restriction to a skew-symmetric binary sequence, defined
by Golay [30] in 1972 as a binary sequence (a0, a1, . . . , a2m) of odd length 2m+1 for which

am+i = (−1)iam−i for i = 1, 2, . . . ,m. (14)

(Condition (14) had also been noted by Littlewood [53], [54] in relation to a question
involving the supremum norm of ±1 polynomials on the unit circle).

Skew-symmetric sequences are known to attain the optimal merit factor value Fn for
the following odd values of n < 60: 3, 5, 7, 9, 11, 13, 15, 17, 21, 27, 29, 39, 41, 43,
45, 47, 49, 51, 53, 55, 57 and 59. Indeed, Golay [32] used the observation that all odd
length Barker sequences are skew-symmetric to propose the skew-symmetric property as
a sieve in searching for sequences with large merit factor. The computational advantage
of this sieve is that it roughly doubles the sequence length that can be searched with
given computational resources. Furthermore, as noted by Golay [30], half the aperiodic
autocorrelations of a skew-symmetric sequence are 0:

Proposition 3.1. A skew-symmetric binary sequence A of odd length has CA(u) = 0 for

all odd u.

Golay [32] proposed that the asymptotic optimal merit factor of the set of skew-
symmetric sequences is equal to lim supn−→∞ Fn, so that nothing is lost by restricting
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attention to this set. Although Golay’s argument was heuristic and relied on the un-
proven “Postulate of Mathematical Ergodicity” (see Section 4.7), we know [10, p. 33]
that the asymptotic value of the mean merit factor does not change when we restrict to
skew-symmetric sequences (by comparison with Proposition 1.1):

Proposition 3.2. The mean value of 1/F , taken over all skew-symmetric sequences of

odd length n, is
(n − 1)(n − 2)

n2
.

The optimal merit factor over all skew-symmetric sequences of odd length n was cal-
culated by Golay [32] for n ≤ 59 in 1977. It was then calculated independently by Golay
and Harris [35] for n ≤ 69 in 1990 and by de Groot, Würtz and Hoffmann [22] for n ≤ 71
in 1992. It would be feasible, using the methods of Section 3.2, to extend these results to
lengths up to around 119 (involving 60 arbitrary sequence elements), although it is not
clear to me that this would represent a useful investment of computational resources.

In 1990 Golay and Harris [35] found good skew-symmetric sequences for odd lengths n
in the range 71 ≤ n ≤ 117 by regarding a skew-symmetric sequence as the interleaving
of two constrained sequences: one symmetric and the other anti-symmetric. They formed
candidate sets S1 of symmetric sequences and S2 of anti-symmetric sequences, each of
whose members had large merit factor relative to other sequences of the same type, and
then found the largest merit factor over all interleavings of a sequence from S1 with a
sequence from S2.

3.2 Exhaustive Computation

The value of Fn has been calculated:

(i) for “small n” in 1965 by Lunelli [55], as referenced in [74] (and expressed in terms of
minimising (8))

(ii) for 7 ≤ n ≤ 19 by Swinnerton-Dyer, as presented by Littlewood [54] in 1966 (and
expressed in terms of minimising (11))

(iii) for n ≤ 32 by Turyn, as presented by Golay [33] in 1982

(iv) for n ≤ 48 in 1996 by Mertens [58]

(v) for n ≤ 60 (the current record) by Mertens and Bauke [59].

The merit factor of a binary sequence of length n can be calculated from (1) and (2) in
O(n2) operations. The computations for a given sequence can be re-used to calculate the
merit factor of other sequences of the same length by changing one sequence element at a
time and updating the aperiodic autocorrelations in O(n) operations for each such change.
The determination of Fn by calculating the merit factor in this way for all 2n sequences
of length n, for example by using a Gray code, requires O(n2n) operations. However the
algorithm of [58] and [59] reduces the exponential term of the complexity of determining
Fn from 2n to roughly 1.85n by means of a branch-and-bound algorithm. The principle
is to fix the sequence elements one pair at a time, working from the endpoints towards
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the centre and pruning the search tree by bounding
∑

u>0[C(u)]2. (See Section 2.1 for a
a similar idea applied to the calculation of Mn in [18] and [19], reducing the exponential
term of the complexity of that calculation from 2n to roughly 1.4n.)

3.3 Stochastic Search Algorithms

For a given sequence length n, the search for a good lower bound for Fn can be viewed as
a combinatorial optimisation problem over the space of 2n binary sequences. This prob-
lem, often referred to as the “low autocorrelated binary string problem”, has been studied
in theoretical physics in connection with quantum models of magnetism as well as in
theoretical chemistry. Early results [4], [5], [22] from the application of simulated anneal-
ing and evolutionary algorithms to the optimisation problem were rather disappointing,
finding merit factor values no larger than about 6 for sequence lengths of around 200
and often failing to find previously known large merit factor values. Bernasconi [5] pre-
dicted from computational experiments that “. . . stochastic search procedures will not yield
merit factors higher than about F = 5 for long sequences” (referring to lengths greater
than about 200), and the problem was declared [22] to be “. . . amongst the most difficult
optimization problems”.

Several authors [5], [58], [60] suggested that the combinatorial landscape of the search
space exhibits “golf-hole” behaviour, in the sense that the sequences attaining Fn are
extremely isolated within the landscape (see [65] for an overview of combinatorial land-
scapes). This suggestion appears to have originated with an unfavourable comparison
between empirically obtained merit factor values and the value of approximately 12.32. . .
conjectured by Golay [33] for lim supn−→∞ Fn, even though Golay’s value depends on an
unproven hypothesis (see Section 4.7). But, while the landscape has an exceptionally large
number of local optima [23], after detailed analysis Ferreira, Fontanari and Stadler [27]
found no evidence of “golf-hole” behaviour and suggested that the difference in difficulty
between this and other problems of combinatorial optimisation is quantitative rather than
qualitative.

As recognised in [22], the performance of stochastic search algorithms can vary sig-
nificantly according to the care with which the algorithm parameters are tuned. In 1998
Militzer, Zamparelli and Beule [60] used an evolutionary algorithm to obtain more encour-
aging numerical results for sequence lengths up to about 200 — although they still consid-
ered that the search for a binary sequence attaining the optimal value Fn “. . . resembles the
search for a needle in the haystack”! The best currently known stochastic search results,
on which Figure 1 is based, are due to Borwein, Ferguson and Knauer [14] (with possible
updates listed at [45]). These results rely on a combination of algorithmic improvements
and extended use of considerable computational resources.

The basic method underlying many of the stochastic search algorithms is to move
through the search space of sequences by changing only one, or sometimes two, sequence
elements at a time. This method was suggested by Golay [31] as early as 1975, in relation
to skew-symmetric sequences. The merit factor of any close neighbour sequence can be
calculated in O(n) operations from knowledge of the aperiodic autocorrelations of the cur-
rent sequence. The search algorithm specifies when it is acceptable to move to a neighbour
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sequence, for example when it has merit factor no smaller than the current sequence, or
when it has the largest merit factor amongst all close neighbours not previously visited.
The search algorithm must also specify how to choose a new sequence when no acceptable
neighbour sequence can be found. The method of [14] augments this search strategy to
allow the addition or removal of one outer sequence element at a time.

Many authors [4], [22], [32], [35] [60] have applied stochastic search algorithms only to
skew-symmetric sequences in order to obtain results for lengths that would otherwise be
out of computational reach (see Section 3.1). The results of [14] for all lengths n ≥ 103
(both odd and even) are based on searches for which the initial sequence is skew-symmetric.

Despite recent improvements, no stochastic search algorithm has yet been found that
reliably produces binary sequences with merit factor greater than 6 in reasonable time for
large n. Therefore such algorithms cannot yet shed light on whether the known range for
lim supn−→∞ Fn given in (3) can be narrowed.

4 Theoretical Approaches

In this section we consider theoretical approaches to the Merit Factor Problem, based
mostly on infinite families of binary sequences with specified structure.

4.1 Legendre Sequences

We begin with the strongest proven asymptotic result. The Legendre sequence X =
(x0, x1, . . . , xn−1) of prime length n is defined by:

xi :=

(

i

n

)

for 0 ≤ i < n,

where
(

i
n

)

is the Legendre symbol (which takes the value 1 if i is a quadratic residue
modulo n and the value −1 if not; we choose the convention that

(

i
n

)

:= 1 if i = 0).
Given a sequence A = (a0, a1, . . . , an−1) of length n and a real number r, we write Ar for
the sequence (b0, b1, . . . , bn−1) obtained by rotating (equivalently, cyclically shifting) the
sequence A by a multiple r of its length:

bi := a(i+⌊rn⌋) mod n for 0 ≤ i < n. (15)

In 1981 Turyn calculated the merit factor of the rotation Xr of the Legendre sequence
X for sequence lengths up to 10,000, as reported in [34]. Based on Turyn’s work Golay [34]
gave a derivation of the asymptotic value of this merit factor, which accorded with Turyn’s
calculations but relied on heuristic arguments as well as the “Postulate of Mathematical
Ergodicity” (see Section 4.7). In 1988 Høholdt and Jensen [39] proved that the expression
derived by Golay is in fact correct:

Theorem 4.1. Let X be a Legendre sequence of prime length n. Then

1

lim
n−→∞

F (Xr)
=

{ 1
6 + 8(r − 1

4)2 for 0 ≤ r ≤ 1
2

1
6 + 8(r − 3

4)2 for 1
2 ≤ r ≤ 1.

(16)
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Therefore the asymptotic merit factor of the optimal rotation of a Legendre sequence
is 6 and occurs for r = 1/4 and r = 3/4. Borwein and Choi [12] subsequently determined
the exact, rather than the asymptotic, value of F (Xr) for all r. In the optimal cases r = 1/4
and r = 3/4, this exact value involves the class number of the imaginary quadratic field
Q(

√−n).
The analytical method used by Høholdt and Jensen [39], and its refinement in [12],

applies only to odd-length sequences and depends crucially on the relationship of the
sequence to a cyclic difference set, in this case belonging to the parameter class

(v, k, λ) = (n, (n − 1)/2, (n − 3)/4) for integer n ≡ 3 (mod 4). (17)

(Many constructions for difference sets with parameters (17) are known; see [75] for a
survey and [37] for an important recent result. The parameter class (17) is referred to as
Hadamard, but unfortunately so is another parameter class (7).)

It is well known (see for example [6]) that, for n ≡ 3 (mod 4), a Legendre sequence X
of length n is equivalent to a cyclic difference set in Zn with parameters from the class (17),
known as a quadratic residue or Paley difference set. By Proposition 2.2 this is equivalent
to X having constant periodic autocorrelation at all non-zero shifts, and this property is
retained under all rotations of the sequence:

RXr
(u) = −1 for 0 ≤ r ≤ 1 and 0 < u < n. (18)

Therefore, from (6), every rotation of a Legendre sequence of length n ≡ 3 (mod 4) has
the property that its aperiodic autocorrelations sum in pairs to −1. Of course this does not
imply that the individual aperiodic autocorrelations will themselves have small magnitude
but one might hope that, for some rotation, the full set of aperiodic autocorrelations will
have a small sum of squares. Indeed, R. Turyn has indicated [personal communication,
May 2003] that this was exactly his rationale for investigating these sequences. (Similar
reasoning was used by Boehmer [7] in seeking binary sequences A with a small value of
M(A), as defined in (9), from sequences having small periodic autocorrelation at all non-
zero shifts.) For n ≡ 1 (mod 4), all rotations of a Legendre sequence are equivalent to a
partial difference set in Zn [56, Theorem 2.1] and can be dealt with in a similar manner
to the case n ≡ 3 (mod 4), for example [13] by slight modification to the sequence.

An asymptotic merit factor of 6, as given by the family of Legendre sequences in
Theorem 4.1, is the largest so far proven. We shall see in Section 5 that there is strong
evidence, although not a proof, that an asymptotic merit factor greater than 6.34 can
be achieved via a related family of sequences. I find it remarkable that both of these
constructions, as well as others described in this section, rely directly on special periodic

autocorrelation properties of the sequences. In my opinion this is a reflection of the current
paucity of powerful tools for analysing aperiodic autocorrelations independently of their
periodic properties. Indeed, while periodic behaviour lends itself readily to mathematical
investigation via techniques from algebra and analysis based on an underlying cyclic group
or finite field, it remains the case [26, p. 269] that “. . . the aperiodic correlation properties
of sequences are notoriously difficult to analyse”; see [64] for further discussion of this
point. Given the appropriate mathematical tools, I believe we might uncover asymptotic
merit factors significantly greater than those suggested by the results of Section 5.
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The method introduced by Høholdt and Jensen [39] to calculate the asymptotic merit
factor of rotated Legendre sequences was subsequently applied to further families of odd-
length binary sequences corresponding to cyclic difference sets with parameters in the class
(17) (see Sections 4.4 and 4.6).

4.2 Rudin-Shapiro Sequences

We next consider the earliest asymptotic merit factor result of which I am aware. Given
sequences A = (a0, a1, . . . , an−1) of length n and A′ = (a′0, a

′
1, . . . , a

′
n′−1) of length n′ we

write A;A′ for the sequence (b0, b1, . . . , bn+n′−1) given by appending A′ to A:

bi :=

{

ai for 0 ≤ i < n
a′i−n for n ≤ i < n + n′.

(19)

The Rudin-Shapiro sequence pair X(m), Y (m) of length 2m is defined recursively [66], [71]
by:

X(m) := X(m−1);Y (m−1), (20)

Y (m) := X(m−1);−Y (m−1). (21)

where X(0) = Y (0) := [1]. In 1968 Littlewood [54, p. 28] proved (in the language of
complex-valued polynomials — see Section 2.2):

Theorem 4.2. The merit factor of both sequences X(m), Y (m) of a Rudin-Shapiro pair of

length 2m is
3

(1 − (−1/2)m)
.

Therefore the asymptotic merit factor of both sequences of a Rudin-Shapiro pair is 3.
To my knowledge, Theorem 4.2 is the first explicit construction of an infinite family of
binary sequences, each with known merit factor, whose asymptotic merit factor is non-zero.
It is not surprising that such constructions exist, because by Proposition 1.1 the expected
asymptotic value of 1/F for a randomly-chosen binary sequence is 1. Nonetheless such
a construction did not appear in the digital sequence design literature until Theorem 4.2
was rediscovered in generalised form as Theorem 4.3 in 1985. (In fact Littlewood [52, p.
334] performed the “straightforward calculations” leading to Theorem 4.2 as early as 1961,
but the stated values in [52] are incorrect.)

Rudin-Shapiro sequence pairs are a special case of binary Golay complementary se-
quence pairs. (H. Shapiro suggests [70] that, in terms of historical precedence, a more
suitable name than “Rudin-Shapiro” would be “Golay-Shapiro”; the confusion seems to
have arisen from several mistaken citations of [71] as having been published in 1957, only
two years prior to [66], rather than 1951.) Golay complementary pairs were introduced by
Golay [28], [29] in 1949 in connection with a problem in infrared multislit spectroscopy and
have seen repeated practical application since then, most recently in multicarrier wireless
transmission (see [21] for details and recent results).

14



4.3 Generalisations of the Rudin-Shapiro Sequences

We now describe two generalisations of the Rudin-Shapiro sequences. Unfortunately nei-
ther improves on the asymptotic merit factor of 3 achieved in Theorem 4.2.

A first generalisation involves binary sequences X(m) = (x0, x1, . . . , x2m−1) of length
2m that are defined recursively via:

x2i+j := (−1)j+f(i)x2i−j−1 for 0 ≤ j < 2i and 0 ≤ i < m, (22)

where x0 := 1 and f is any function from N to {0, 1}. If we take

f(i) =

{

0 if i = 0 or i is odd
1 if i > 0 is even

then the resulting sequence X(m) satisfies (20), and if we take the same function f but
switch the value of f(m−1) then the resulting sequence Y (m) satisfies (21); so the sequences
of a Rudin-Shapiro pair are special cases of (22).

In 1985 Høholdt, Jensen and Justesen [40] established:

Theorem 4.3. The merit factor of the sequence X(m) defined in (22) is
3

(1 − (−1/2)m)
for any function f .

Therefore the asymptotic merit factor of this family of sequences is 3.
Using polynomial notation, we can further generalise the Rudin-Shapiro sequences by

regarding (22) as the special case X(0) = 1 of the recursive construction

PX(m)(z) := PX(m−1)(z) ± z2m−1
P ∗

X(m−1)(−z), (23)

where P ∗(z) is defined to be zn−1P (1/z) for a polynomial P (z) of degree n − 1. In 2000
Borwein and Mossinghoff [15] considered choices for the initial polynomial other than
X(0) = 1, having unrestricted degree, but concluded that the asymptotic merit factor
achievable from (23) in this way is never more than 3.

The asymptotic merit factor results of Sections 4.2 and 4.3 are unusual in that they
do not rely on special periodic autocorrelation properties. Instead, the merit factor is
calculated directly from the defining recurrence relations.

4.4 Maximal Length Shift Register Sequences

A maximal length shift register sequence (often abbreviated to an ML-sequence or m-
sequence) X = (x0, x1, . . . , x2m−2) of length 2m − 1 is defined by:

xi := (−1)tr(βαi) for 0 ≤ i < 2m − 1,

where α is a primitive element of the field F2m , β is a fixed element of the same field, and
tr() is the trace function from F2m to F2. The name given to these sequences arises from
an alternative definition involving a linear recurrence relation of period 2m−1 that can be
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physically implemented using a shift register with m stages [36]. A maximal length shift
register sequence is equivalent to a type of cyclic difference set with parameters from the
class (17), known as a Singer difference set.

Sarwate [68] showed in 1984 that:

Theorem 4.4. The mean value of 1/F , taken over all n rotations of a maximal length

shift register sequence of length n = 2m − 1, is
(n − 1)(n + 4)

3n2
.

([40] points out that Theorem 4.4 could be derived from much earlier results due
to Lindholm [50].) Theorem 4.4 implies that for any length n = 2m − 1 there is some
rotation of a maximal length shift register sequence of length n with merit factor of at

least 3n2/((n − 1)(n + 4)), which asymptotically equals 3. This suggests the possibility
of achieving an asymptotic merit factor greater than 3 by choosing a suitable rotation of
a maximal length shift register sequence, but in 1989 Jensen and Høholdt [41] used the
method introduced in [39] to show that this is not possible:

Theorem 4.5. The asymptotic merit factor of any rotation of a maximal length shift

register sequence is 3.

4.5 Jacobi Sequences

A Jacobi sequence X = (x0, x1, . . . , xn−1) of length n = p1p2 . . . pr, where p1 < p2 < . . . <
pr and each pj is prime, is defined by:

xi :=

(

i

p1

)(

i

p2

)

. . .

(

i

pr

)

for 0 ≤ i < n.

We can regard Jacobi sequences as the “product” of r Legendre sequences; for r > 1 such
sequences do not correspond to difference sets.

In 2001 Borwein and Choi [11] proved:

Theorem 4.6. Let X be a Jacobi sequence of length n = p1p2 . . . pr, where p1 < p2 < . . . pr

and each pj is prime. Then, provided that nǫ/p1 −→ 0 for any fixed ǫ > 0 as n −→ ∞,

1/limn−→∞F (Xr) is given by (16).

Therefore, provided that (roughly speaking) p1 does not grow significantly more slowly
than n, the asymptotic merit factor of the optimal rotation of a Jacobi sequence is 6. The
case r = 2 of Theorem 4.6, subject to a more restrictive condition on the growth of p1,
was given earlier by Jensen, Jensen and Høholdt [42].

4.6 Modified Jacobi Sequences

We next consider a modification of the Jacobi sequences of Section 4.5 for the case r = 2,
as introduced by Jensen, Jensen and Høholdt [42]. A modified Jacobi sequence X =
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(x0, x1, . . . , xn−1) of length n = pq, where p and q are distinct primes, is defined by:

xi :=















1 for i ≡ 0 (mod q)
−1 for i > 0 and i ≡ 0 (mod p)
(

i

p

)(

i

q

)

for all other i for which 0 ≤ i < n.

In the case q = p + 2, a modified Jacobi sequence is called a Twin Prime sequence and
corresponds to a type of cyclic difference set with parameters from the class (17), known
as a Twin Prime difference set.

In 1991 Jensen, Jensen and Høholdt [42] used the method introduced in [39] to prove:

Theorem 4.7. Let X be a modified Jacobi sequence of length pq, where p and q are distinct

primes. Then, provided that ((p + q)5 log4(n))/n3 −→ 0 as n −→ ∞, 1/limn−→∞F (Xr) is

given by (16).

Therefore, provided that p grows roughly as fast as q, the asymptotic merit factor
of the optimal rotation of a modified Jacobi sequence (and in particular a Twin Prime
sequence) is 6.

4.7 Golay’s “Postulate of Mathematical Ergodicity”

The aperiodic autocorrelations C(1), C(2), . . . , C(n − 1) of a sequence that is chosen at
random from the 2n binary sequences of length n are clearly dependent random variables.
However in 1977 Golay [32] proposed, with an appeal to intuition and by analogy with
statistical mechanics, a “Postulate of Mathematical Ergodicity” that states roughly:

The correct value of lim supn−→∞ Fn can be found by treating C(1), C(2), . . . , C(n − 1)
as independent random variables for large n.

(The statement of the Postulate in [32] and its restatement in [33] are not entirely precise;
indeed, Massey disclosed [57] that he was asked to mediate a dispute between Golay and
the referees over the level of rigour of [33].)

Assuming the Postulate, Golay argued in [32] that limn−→∞Fn = 2e2 ≃ 14.78. In 1982
Golay [33] identified a “convenient, but faulty, approximation” in [32] and, by refining its
heuristic arguments, concluded instead that the Postulate implies:

Conjecture 4.8 (Golay, 1982 [33]). limn−→∞Fn = 12.32 . . .

Golay [33] also argued that:

(i) restriction to skew-symmetric sequences (see Section 3.1) does not change the asymp-
totic optimal merit factor

(ii) it is “most likely” that Fn ≤ 12.32 . . . for all n 6= 13.
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Bernasconi [5] gave a more transparent derivation of the value 12.32. . . as an estimate
for the asymptotic optimal merit factor, based on “an uncontrolled approximation for
the partition function”. Although the underlying assumption in [5] and [33] is clearly
identified as unproven, its derived consequences are sometimes quoted as fact (for exam-
ple, conclusion (ii) above and Conjecture 4.8 are treated in [4] and [16] respectively as
proven results). Massey [57] wrote that he “would not want to bet on the contrary [to
Conjecture 4.8]”.

Golay [34] used the Postulate to predict correctly the asymptotic merit factor of a
rotated Legendre sequence (see Section 4.1). Further evidence in support of the Postulate
was given by Ferreira, Fontanari and Stadler [27], who found unexpectedly good agreement
between experimentally determined parameters of the combinatorial search landscape (see
Section 3.3) and those predicted by the Postulate. Nonetheless I am sceptical about its
use: I do not find the arguments proposed in its favour in [33] to be convincing, and it
seems not to be falsifiable except by direct disproof of Conjecture 4.8 or conclusion (i)
above.

5 Periodic Appending

This section contains an overview of recent results of Borwein, Choi and Jedwab [13] that
strongly suggest that lim supn−→∞ Fn > 6. These results were motivated by the discoveries
of A. Kirilusha and G. Narayanaswamy in 1999, working as summer students under the
supervision of J. Davis at the University of Richmond.

We shall make use of the definition of rotation and appending of sequences as given
in (15) and (19). Given a sequence A = (a0, a1, . . . , an−1) of length n and a real number
t satisfying 0 ≤ t ≤ 1, we write At for the sequence (b0, b1, . . . , b⌊tn⌋−1) obtained by
truncating A to a fraction t of its length:

bi := ai for 0 ≤ i < ⌊tn⌋.

Let X be a Legendre sequence of prime length n. We know from Theorem 4.1 that
limn−→∞F (X 1

4
) = 6. Kirilusha and Narayanaswamy [44] investigated how the merit factor

of X 1
4

changes as sequence elements are successively appended. They observed:

Proposition 5.1. Let {An} and {Bn} be sets of binary sequences, where each An has

length n and each Bn has length o(
√

n). Then

1

F (An;Bn)
=

1

F (An)
+ o(1).

It follows that up to o(
√

n) arbitrary sequence elements ±1 can be appended to X 1
4

without changing the asymptotic merit factor of 6. Kirilusha and Narayanaswamy [44]
then asked which choice of specific sequence elements yields the best merit factor when
appended to X 1

4
. To considerable surprise, they found that when the appended sequence

elements are identical to some truncation of X 1
4
, the merit factor appears to increase to a

value consistently greater than 6.2!
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This phenomenon was studied in detail in [13]. A key realisation was that the number
of appended elements should take the form ⌊tn⌋ for some fixed t, rather than the form
⌊nα⌋ for fixed α < 1 as suggested in [44]. Figure 2 shows the variation of F (Xr; (Xr)

t)
with r for the optimal value of t, for a large fixed length n = 259499. Extensive numerical
evidence was presented in [13] to suggest that:

(i) for large n, the merit factor of the appended sequence X 1
4
; (X 1

4
)t is greater than 6.2

when t ≃ 0.03

(ii) for large n, the merit factor of the appended sequence Xr; (Xr)
t is greater than 6.34

for r ≃ 0.22 and r ≃ 0.72, when t ≃ 0.06.

0.25 0.5 0.75 1
r

1

2

3

4

5

6

F

Figure 2: The merit factor of the r-rotated Legendre sequence of length 259499 before (×)

and after (·) appending of the optimal number of its own initial elements, for varying r.

I do not have a complete explanation for these apparent properties but they appear to
rely on Xr having small periodic autocorrelation at all non-zero shifts, as given by (18). It
seems that this causes the aperiodic autocorrelations of the appended sequence Xr; (Xr)

t

to be collectively small (for some values of r 6= 0 and for an appropriate value of t). In fact
the process of successively appending initial elements of the sequence to itself would give
a progressively larger merit factor if not for the single shift u = n. At this shift, the initial
⌊tn⌋ elements of Xr are mapped onto copies of themselves and the resulting contribution
of (⌊tn⌋)2 to

∑

[C(u)]2 cannot be allowed to grow too large.

19



This intuition was formalised in [13], leading to an asymptotic relationship between
the merit factor of the appended sequence Xr; (Xr)

t and the merit factor of two truncated
sequences (Xr)

t and (Xr+t)
1−t:

Theorem 5.2 ([13, Theorem 6.4 and equation (20)]). Let X be a Legendre sequence of

prime length n and let r, t satisfy 0 ≤ r ≤ 1 and 0 < t ≤ 1. Then, for large n,

1

F (Xr; (Xr)t)
∼







2
(

t
1+t

)2 (

1
F ((Xr)t) + 1

)

+
(

1−t
1+t

)2 (

1
F ((Xr+t)1−t)

)

for t < 1

1
2

(

1
F (Xr) + 1

)

. for t = 1.
(24)

(The single shift u = n is responsible for a contribution of 2
(

t
1+t

)2
to the right-

hand side of (24) for t ≤ 1; if this contribution were zero for t = 1 we would have
F (Xr;Xr) = 2F (Xr).) Given Theorem 5.2, it is sufficient to determine an asymptotic
form for the function t2/F ((Xr)

t) for any (r, t) satisfying 0 ≤ r ≤ 1 and 0 < t ≤ 1; this
asymptotic form is already known for t = 1 from Theorem 4.1. Numerical evidence from
sequences up to millions of elements in length leads to:

Conjecture 5.3 ([13, Conjecture 7.5]). Let X be a Legendre sequence of prime length n.

Then

g(r, t) :=







lim
n−→∞

(

t2

F ((Xr)t)

)

for 0 < t ≤ 1

0 for t = 0
(25)

is well-defined for any r, t ∈ [0, 1] and is given by

g(r, t) = t2(1 − 4
3t) + h(r, t),

where

h(r + 1
2 , t) := h(r, t) for 0 ≤ r ≤ 1

2 and 0 ≤ t ≤ 1

and h(r, t) is defined for 0 ≤ r ≤ 1/2 and 0 ≤ t ≤ 1 in Figure 3.

By Proposition 7.6 of [13], the definition of h(r, t) given in Figure 3 is needed for only
one of the regions R2 and R3, because if the definition holds in either one then it holds in
the other.

Support for Conjecture 5.3 is given by calculations [13] showing that for

(r, t) ∈ G := {0, 1/64, 2/64, . . . , 1} × {1/64, 2/64, . . . , 1},

the maximum discrepancy between the conjectured and actual value of t2/F ((Xr)
t) is

max
(r,t)∈G

∣

∣

∣

∣

t2

F ((Xr)t)
− g(r, t)

∣

∣

∣

∣

=







0.00484 for n = 22783
0.00122 for n = 259499
0.00025 for n = 4433701.

(26)

Subject to Conjecture 5.3, Theorem 5.2 implies that the maximum value of limn−→∞F (Xr; (Xr)
t)

over r, t ∈ [0, 1] is approximately 6.3421, occurring at r ≃ 0.2211 and 0.7211 and t ≃ 0.0578,
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Figure 3: The function h(r, t) for the range 0 ≤ r ≤ 1/2 and 0 ≤ t ≤ 1, in regions R1, R2,
R3 and R4.

and the maximum value of limn−→∞F (X 1
4
; (X 1

4
)t) over t ∈ [0, 1] is approximately 6.2018,

occurring at t ≃ 0.0338 [13]. These values are in excellent agreement with calculated data.
Furthermore, experimental results [13] suggest that, provided p and q grow roughly as

fast as each other, appending the initial elements of a modified Jacobi sequence of length
n = pq (see Section 4.6) to itself produces the same asymptotic behaviour as for Legendre
sequences. Likewise, M. Parker [personal communication, June 2003] has found numerical
evidence that the same is true for a family of sequences described in [63], provided that
the sign of sequence elements is reversed under rotation and under appending.

Independently of [13], Kristiansen [46] presented sequences of length up to 20,000
having merit factor greater than 6.3, also inspired by Kirilusha and Narayanaswamy [44].
Each of the sequences in [46] is obtained by searching over a set of sequences derived from
a Legendre sequence. [46] gives an approximate value for the total number of sequence
elements resulting from the search but does not contain a theoretical explanation of the
merit factor properties of the sequences. In response to a preprint of [13], Kristiansen
and Parker [47] recognised that the sequences in [46] could more easily be viewed as an
appending of a rotated Legendre sequence.
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6 Challenges

I conclude with a personal selection of challenges concerning the Merit Factor Problem,
arranged in order of increasing significance.

(6) Find a binary sequence X of length n > 13 for which F (X) ≥ 10.

Such a sequence would give the largest known merit factor, with the exception of
Barker sequences of length 11 and 13 (see Section 3).

(5) Find a binary sequence X for which F (X) > 14.1.

Regarding such a possibility, Massey [57] wrote in 1990: “Golay always regarded the
length 13 Barker Sequences, whose merit factor is 14.08. . . as a singularity of nature
whose goodness would never again be attained”. Attractive though such a result
would be, I have not placed it any higher on the list of challenges because I believe
the study of the merit factor is fundamentally concerned with asymptotic behaviour,
not the identification of a particular sequence with an unusually large value of F .

(4) Prove that Conjecture 1.2 is false.

This might be achieved, for example, by determining the asymptotic value of t2/F ((Xr)
t)

for a Legendre sequence X for appropriate r and t (see Conjecture 5.3). A disproof
of Conjecture 1.2 would give a proven new lower bound on lim supn−→∞ Fn for the
first time since 1988.

(3) Find a binary sequence family X for which limn−→∞F (X) > 6.3421 . . .

The apparent lower bound of 6.3421. . . implied by Conjecture 5.3 arises by reference
to periodic properties of Legendre sequences. I believe that better bounds might be
found from a direct analysis of aperiodic behaviour (see Section 4.1).

(2) Find a binary sequence family X for which limn−→∞F (X) is an integer
greater than 6.

Although I do not have a satisfying explanation, I find it remarkable that the Legen-
dre, Rudin-Shapiro, generalised Rudin-Shapiro (22), maximal length shift register,
Jacobi, and modified Jacobi sequences all have an asymptotic merit factor that takes
an integer value (see Section 4). One might expect that some other infinite families
of sequences behave similarly.

(1) Determine whether lim supn−→∞ Fn is finite and, if so, determine its value.

This is a restatement of the Merit Factor Problem. If lim supn−→∞ Fn is infinite
then Conjecture 1.3 from 1966 is true, whereas if it is finite then Conjecture 2.4
from 1957 is true and furthermore there are only finitely many Barker sequences (see
Section 2.2). If lim supn−→∞ Fn takes any value other than 12.32. . . then Golay’s
“Postulate of Mathematical Ergodicity” is false (see Section 4.7).
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